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Conformal fluctuations serve as a powerful tool to study the nature of quantum 
gravity. They lead, in a natural fashion, to the concept of stationary states for the 
quantum geometry. We attempt to incorporate the effect of conformal fluctua- 
tions into the background metric and matter. A modified set of equations, 
including the effect of conformal fluctuations, is presented and the solutions are 
discussed. It is shown that matter-free vacuum is unstable to conformal fluctua- 
tions. A scenario for creation of matter is indicated. 

1. INTRODUCTION 

At the turn of this century, physics was facing a crisis: the existing 
formalism of classical physics predicted that the electron in the hydrogen 
atom will spiral down to the nucleus. This collapse was averted with the 
advent of quantum physics. Quantum theory introduced the concept of 
definite, stable stationary states for the electron to exist in, thereby render- 
ing meaningless the unique classical trajectory that spirals down to the 
proton. 

It was realized in the sixties (Hawking and Ellis, 1973) that classical 
physics predicts a much more serious collapse also--the collapse of space- 
time geometry at a singularity. Once again, it is necessary to see whether a 
quantum version of the theory would avoid the classical singularity. (For a 
discussion of this analogy, see Misner, Thorne, and Wheeler, 1973.) 

Lack of a concrete theory of quantum gravity has prevented physicists 
from answering the question unequivocally. Quantum gravity shakes the 
foundations of space-time structure--and hence, the concept of causal 
separation--and leads to complicated conceptual problems. 
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Recently, an attempt was made to quantize gravity, in which the above 
problem could be attacked effectively (see, for example, Narlikar, 1981; 
Padmanabhan and Narlikar, 1981). In this approach, the path integral 
formalism is used to quantize the conformal part of the geometry--which is 
one of the two degrees of freedom of gravity--freezing the other degree of 
freedom at the classical value. In cases like the Robertson-Walker universe, 
which possess a high degree of symmetry, there is only one degree of 
freedom (Ryan, 1972) and this approach can be used with confidence. 

Such an analysis has shown that quantum transitions to nonsingular 
space-times are overwhelmingly probable near a classical singularity 
(Padmanabhan and Narlikar, 1982a). It has also been shown that conformal 
quantum fluctuations avoid the singularity and set a lower bound to the 
length scale (Padmanabhan and Narlikar, 1981). Thus the situation parallels 
the case of the hydrogen atom to a remarkable extent, as far as this 
approach is concerned. 

The question arises as to how far this analogy can be pursued. What is 
the nature of the stationary states of geometry? What does the simplest 
quantum gravity structure look like? Can one develop a full-fledged theory 
of quantum gravity along these lines? We discuss these aspects in the 
present paper. 

In the first few sections of the paper, we discuss the nature of 
stationary states corresponding to simple space-time geometries. This analy- 
sis confirms the previous conclusions. Later, we present an attempt at 
modifying the classical equations, taking into account the quantum correc- 
tions (at least at a semiclassical level). The solutions of this set of equations 
have some novel features, which we discuss in the last part of the paper. 

The logistics and details of this approach of quantum conformal 
fluctuations are discussed in the papers referred to previously and will not 
be repeated here. We shall indicate the basic formalism and borrow the 
necessary results from previous works. 

2. QUANTUM STATIONARY STATES 

2.1. Basic Formalism. Consider a four-dimensional space-time, which 
is foliated by a set of three-dimensional spacelike hypersurfaces ]E(t), 
parametrized by a global timelike coordinate t. Classical evolution of the 
space-time geometry is determined by the Einstein equations, which can be 
obtained from the variation of the action (units: c = 1) 

Jto! 
~ l 

161rG f R( - g)l/Ed4x + Jm + JHaw~.g (1) 
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The space-time geometry must be varied in the four-dimensional re- 
gion, sandwiched between two spacelike hypersurfaces ]~l and Y2, on which 
the 3-geometries, 3~, are fixed. In equation (l), J,, stands for the action for 
matter; JHawking is a surface counterterm required to remove the second 
derivatives in the Einstein action [for details, see, e.g., Hawking (1979).] 
Once the 3-geometries are specified on Y,~ and Y'2, Einstein's equation 
uniquely specifies the space-time geometry. 

This uniqueness, however, is lost in the quantum version. Quantum 
gravity will provide the probability amplitude for transition from one 3~ l at 
Y., to another 3-geometry 3~ 2 at Y2, in the form of a path integral, 

K[3GG; 3 y,] (2) 

Expressing Jtot in terms of true degrees of freedom and choosing a suitable 
integration measure for these variables can be, in general, a formidable 
problem. However, one can rigorously define the kernel when the attention 
is confined to the conformal part of the geometry as a quantum variable 
[which becomes a rigorous theory when the space-time has a high level of 
symmetry, i.e., when the superspace is one dimensional, see Padmanabhan 
(1981)]. Following the earlier works, we shall write the metric gik(x,t), 
separating the conformal part, as 

gik(X, t) = ~2(x)gik(x ) (3) 

and treat ~(x, t) as a quantum variable, with a given background g~k. The 
kernel can now be written as 

K[f~2(x),t2;f~,(x),t,]= frD~(x)exP(hJ ) (4) 

where the path integral is over the c 2 functions, f~(x, t), satisfying the 
boundary conditions; and J is given by (prime indicates quantities corre- 
sponding to gik) 

j [f~] = 161G " f ( / ~ f ~ 2 -  6f~if~i)(_ g),/2 d'x + J,. (5) 

[see, for a derivation, Narlikar (1981)]. Notice that the action J is quadratic 
in f~(x), because of which the functional integral is mathematically well 
defined. Such a situation allows one to write down a unique "SchrOdinger 
equation" for the quantum variable f~, and discuss the stationary states of 
the system (see Feynman and Hibbs, 1965). In the classical limit, the 
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expectation value for ~22 must be used to interpret equation (3). Essentially, 
we have to study the quantum theory of a scalar field f~(x) described by the 
action in equation (5). We shall discuss this situation step by step in the 
coming sections, starting from the simplest. 

2.2. Vacuum Fluctuations of Gravity. It has been suggested many 
times that small-scale space-time behavior is predominated by the fluctua- 
tions of quantum gravity. The present formalism can be used to demon- 
strate this aspect explicitly. Consider a space-time with a flat background 
metric [i.e., g~k = dia(1 , -  1 , -  1 , -  1)]. The conformal fluctuations are 
governed by the action 

3 f(a,a,)d4x (6) J = -- 8'/r----G 

By the standard technique of Fourier transform, we write 

f ~ ( x , t ) =  f a k ( t ) e , k X  d3k 
(2r (7) 

reducing the action in equation (6) to that of a set of harmonic oscillators 
(see Feynman and Hibbs, 1965), with an extra negative sign, 

3 f d3k ftzdt .2 - 2  2 
J =  -- 8qr----G J ~ - ~  dr, []ak]--]k] lak]] (8)  

Since the independent harmonic oscillators can be trivially quantized (in 
spite of the overall sign change, which is arbitrary as long as there is no 
interaction) the problem can be completely solved. The ground state for 
such a system (corresponding to the ground state of all the oscillators), can 
be written in many different ways to give the probability for finding 
different quantum conformal factors in the classical flat space. One physi- 
cally transparent form [compare with the corresponding expression for 
electromagnetic field, discussed by Wheeler in, for example, Wheeler (1964)] 
for the ground state functional of the gravitational field is 

�9 ,p [ ~ ]  = Nexp 
(Vxa)(v,a) ] 

3 1 f fd3  x d3y " ] (9) 
81r 3 t~ Ix-yl 2 

Here Lp = (Gh/c3)  I/2 is the Planck length and we have expressed the 
functional ~ in terms of the physically relevant gradients of f~ (similar to 
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"electromagnetic field"; f~ corresponds to the "potential").  It is clear that 
quantum gravity affects the space-time structure at distances of the order of 
the Planck length. One can evaluate the expectation value of f~2 in the 
ground state and use equation (3) to discuss the effects of quantum gravity. 

The harmonic oscillators corresponding to the ~ ( x , t )  can exist in 
various stationary states (Fock basis for "gravitation") other than ground 
state. Each such configuration corresponds to a stationary state for quan- 
tum geometry, representing different levels of "excitation." This is the 
simplest form of stationary states we come across. 

2.3. Fluctuations in a Space-Time of Maximal Symmetry. We con- 
sider the conformal fluctuations in a space-time which has the maximal 
symmetry-- isot ropy and homogeneity. Such a symmetry restricts the con- 
formal part to depend only on time (see Narlikar, 1978), so that the metric 
has the form 

dF2 r2(dO 2 + sin20 dq52)] (10) as: = { a : ( t ) )  dt 2 ( 1  - r2/a 2) 

Here a is a constant, real or imaginary, corresponding to the "closed" and 
"open"  space-times. It turns out that this fact does not affect the ensuing 
discussion critically. Hence we shall discuss the "closed" model (real a) and 
merely present the results for "open"  model. Classically, the metric in 
equation (10) represents a Robertson-Walker  space-time, with a suitable 
source. We are now interested in a situation where ~ ( t )  is a quantum 
variable [the classical limit in equation (10) must be obtained by a suitable 
expectation value of f~z as indicated], and more specifically in the sta- 
tionary states of this geometry. 

This can be obtained using the formalism previously developed. The 
action now has the form 

3,V ~,~ [ f ~ 2 _ ~ 2  
(11) 

where ~ is the proper volume of the region where the fluctuations are 
considered. (For the closed model, this may be taken to be the total 
volume.) As for the source, we shall take an isotropic radiation field, in 
which case (because of conformal invariance) J,, will be independent of ft. 
(Slight modification is required if the source consists of dust; see below.) 
Treating ~ as a quantum variable, one can write down the Hamiltonian for 
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the system as 

= -  - -  + Mto2q 2 (12) H 2M aq2 

where (normal units) 

c 'Vc 2 
q = a f ~ ;  t o = - - ;  M = - -  (13) 

a Ga 2 

The Hamiltonian corresponds to that of a harmonic oscillator. (The overall 
minus sign merely changes the signs of "energy" eigenvalues. In ordinary 
quantum mechanics the physically relevant energy is positive. In our present 
case the "energy" is merely a mathematical parameter used in separating the 
variables, and hence, can take any sign.) The stationary states are labeled by 
an integer n and are given by the usual Hermite polynomials. The expec- 
tation value for f~ in the n th quantum state is given by 

( n 2 ) . =  ~ , , +  = n +  
M ~ a  2 7 2 

(14) 

where f = c ~ / a 3  and Lp is the Planck length. After a change of scale, the 
space-time in a stationary state is represented by 

d s 2 = f - ' L 2 ( n + � 8 9  2 +sinZOdq~2)] (15) 

Thus the space-time length scale is quantized in the units of Planck length 
with a nonzero lower bound. 

It is necessary to examine the classical limit of this quantized system. 
The classical equations of motion derived from the action (11) have the 
solution 

fir = f~0 sin tot (16) 

(with a suitable choice for origin of time) which correctly represents a 
radiation-filled Robertson-Walker model (see, e.g., Weinberg, 1972). The 
correspondence with classical theory is most pronounced in a quantum state 
where the expectation value of ~2 has the classical value, i.e., 

(f~) = f~osin tot = fU 1 (17) 

It is well known that for the Harmonic oscillator potential there exists a 
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nondispersive coherent state with classical expectation value (see, for details, 
Schiff, 1968; Padmanabhan, 1981). This state has the probability function 
given by 

M~ 2 ] 
bkl 2 = cexp 2-h- (f~ - fa~ ~ (18) 

which is a Gaussian peaked at the classical solution in equation (16) (with a 
suitable choice for the zero of time). This is the closest approximation 
classical limit. If one assumes that the universe is in this quantum state, the 
expectation value of a2 can be calculated from equation (18), leading to the 
metric 

- 1  2 ds2=(a2sin271+ f Lp)[d,12-dx2-sinx(dO 2 +sin2odq,2)] (19) 

The classical evolution is modified by quantum corrections (the term f -  *L}) 
near the singularity. Because of the lower bound in the length scale the 
evolution cannot proceed to dimensions below the Planck length. 

A very similar analysis can be performed when the source consists of 
dust rather than radiation. The evolution of the geometry is described by 

ds2= [a2(1 - cos.o)2+ f-'L2][drt 2 -  d x 2 -  sin2x(dO 2 + sin2Odg,2)] 

(20) 

[see Padmanabhan (1982) for details]. The major conclusions remain un- 
changed in the case of the open model also. 

One might wonder as to what is the correspondence between the 
stationary states of equation (15) and coherent state in equation (19). Such a 
problem exists even for, say, a simple pendulum: a bob suspended by a 
string will have a sinusoidal oscillation of position in time [just as the 
radiation-filled universe has a classical evolution equation (16)] while the 
quantum theory predicts a set of stationary states. The correspondence 
between the two involves questions of measurement. Quantum mechanically 
the "state of a system" has a meaning only after a measurement has been 
performed on the system. It is the act of measurement which prepares the 
system in that state. It is not clear how to describe a "quantum measure- 
ment of the universe," when the observer is part of the system. Further 
progress must await a clarification of this issue. 
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3. A ' ITEMPT FOR A MORE C O M P L E T E  THEORY 

3.1. Introduction. Gravity has two independent degrees of freedom of 
which the conformal part is directly related to one (see Misner, Thorne, and 
Wheeler, 1973; Isenberg and Wheeler, 1979). Robertson-Walker  universes, 
however, are completely described by the conformal part and our formalism 
can be used with confidence. In a general case, our approach brings out 
only s o m e  features of quantum gravity. It is necessary to see whether the 
formalism can be extended further, at least as a valid approximation. 

More specifically, one would like to answer the following questions: (i) 
How is the background metric gik determined? So far we have merely 
assumed a particular form for the metric based on symmetry considerations; 
a complete theory must determine g'ik- (ii) What is the effect of quantizing 
the conformal part on the source--mat ter  or radiation? (iii) Can one obtain 
some more information about the stationary states of geometry? 

The conventional approach to quantum gravity does not make any 
basic distinction between the conformal degree of freedom and the back- 
ground. Both the independent degrees are quantized on the same footing. 
By adopting such a philosophy, one can extend the concept of stationary 
states to all the degrees of freedom (for details of this method see 
Padmanabhan, 1981). As in other conventional attempts of quantum grav- 
ity, this also leads to interpretational problems. 

The space-time geometry, through the light cone structure, decides the 
causal connection between points. Thus, any attempt to quantize all the 
geometrical degrees of freedom does require a reformulation of our basic 
concepts of causality. This problem disappears when the classical interpreta- 
tion of the background metric is retained and only the conformal degree of 
freedom is quantized, since conformally equivalent metrics have the same 
light cone structure. 

We explore the meaning of such a "hybr id"  theory in the ensuing 
sections. The conformal part is quantized and the background metric is 
determined by a set of modified Einstein equations incorporating the 
expectation value of the quantized conformal past. We present some inter- 
esting results of such an attempt. This method can certainly be taken to be a 
better approximation than the one in which the conformal part alone is 
quantized. 

3.2. Basic Formalism. The classical theory of gravity is obtained by 
varying the metric tensor gik in the action, 

1 )1/2 J=16~r---~fR(-g d4x+fL, , , ( -g) ' /2d4.x  " (21) 
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We shall write the metric &k in the form 

gik = fa2gik (22) 

The action J, expressed in terms of ~2 and gik, has the form 

3 fg ,kOi~G~(  - g)l/2d4 x J =  16~rG1 f~2g(_g) , /2d4 x -  

+ f L . , ( a ,  g) fa4 ( -  g),/2 d4x 

_ 3 f E N ~ (  g),/2 1 f a z g ( _ g ) , / 2 d 4 x + ~  G - d 'x  
16~rG 

+ f L . , ~ ' ( -  g ) , / 2  d4x  (23) 

where L NE has the form of the lagrangian for a negative energy scalar field 
(bar indicates quantities evaluated for the background metric). We shall 
now vary the conformal part fa and the background gik as independent 
variables leading to the following equations: 

~2( ~ik l -- -- -~gikR ) +6ti NE 16~rG 3 [ L m ( - g )  ~/2] 
+ = 0 (24) ~"~2 ( -- ~ )1 /2  ~gik 

1 - ,ks [" , , , ( -g )"]  
3~  3 ( - -  g)l/2g 8g ik (25) 

NE stands for the energy-momentum tensor for a negative energy Here, lik 
scalar field, given by 

NE = _ a,~ak~ + �89 k( ao ~a"~ ) lik (26) 

Some trivial manipulation with these equations will lead to standard 
Einstein equations and the constraint ~2 = const. This is the classical theory 
we expect. 

We shall obtain the quantum version of the theory by the following 
requirements: (i) physics is described by the action in equation (23). The 
conformal part must be quantized, using the Hamiltonian derived from this 
action (this is basically what we have been doing). (ii) The background 
metric is not arbitrary but must be determined by equation (24) where the 
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expressions involving f~2 must be replaced by the expectation values, leading 
to a formal equation 

(a2)(Rik--~gik_R)+6(lik >+16~rG a2(_g),/2 8g ik = 0  

(27) 

Thus the quantization of the conformal part leads to definite quantum 
states. The background metric (as well as (~22>) will have definite values in 
these states giving the space-time geometry for different quantum states. We 
shall show that this requirement is quite restrictive. 

(Attempts have been made previously for quantizing the matter fields 
and using the expectation value of the stress tensor as a source for 
unquantized gravity. Our approach is entirely different from these. The 
expectation values we talk about are the expectation values in the quantum 
states of gravity and have nothing to do with the quantum states of matter. 
Moreover, we do treat part of the gravity as quantized.) 

After these preliminary remarks, let us turn to the equations. The 
specific form of the equations depend, of course, on the form chosen for L,,. 
In the case of isotropic radiation, the equation for the background metric 
reads as 

(~22 >( R-,, - �89 +6(t i  NE > + 8~rGTi~rad) = 0 (28) 

while the action for the (quantum) field ~2(x) has the form 

J 161af(6 f~ia i -_ga2)d4x(-g)  '/2 (29) 

For a dust-filled universe, the corresponding equations are 

_ , -  - + NE 8~G<~>T,~ ' ' ' s ' '=  0 (30) <~22>(g,k ~.gikR ) 6(t/ ,  >+ 

1 f ( 6 a ' a i - R a 2 l ( - g ) ' / 2 d 4 x - f f t r ( - g ) ' / 2 d 4 x  (31) J 16rrG 

(T stands for the trace T, kg~*). As a last example, consider the source to be 
of massless scalar field. Then the equations are 

(~22)( Rik--�89 )+6(tYZ)+8~rG(~2) T~sc~aar)-O*ik - (32) 

1 f ( 6 a ' a i - R a 2 ) ( - g ) ' / 2 d 4 x + f a 2 T ( - g ) ' / 2 d 4 x  (33) 
J = -  16~r----G 
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We shall discuss the solutions to the above equations for all the three cases, 
in analogy with the discussions in Section 2. 

3.3. Explicit Solutions. The first surprise from the equations arises 
when we look for the "simplest" kind of solution--vacuum with no matter. 
Setting the matter part of the action to zero (i.e., L,, = 0) leads to the 
equations 

( a2 ) ( /~k - �89 ) +6~ tNE) = 0 (34) 

J~= 83Gf(~i~2i)(-~)'/2d4x (35) 

A quantum version of equation (35) is trivial to obtain and was analyzed 
previously (Section 2.2). In a true vacuum, all events are equivalent and 
space must be homogeneous and isotropic. It is trivial to see that no such 
consistent solution exists for equation (34). Matterless vacuum--even flat 
space--is unstable against the quantum conformal fluctuations. Quantum 
gravity, so to say, predicts and demands the existence of matter. 

Classical gravity, in this regard, is somewhat incomplete. Einstein's 
theory describes the evolution of matter without explaining its existence. 
Given a matter distribution for the universe, Einstein's equation predicts the 
evolution from the initial singularity without ever explaining how the matter 
came into being in the first place. 

In fact, classical gravity cannot explain such a process of creation, since 
it has built into it the energy conservation law for the source. The present 
set of equations has an effective negative energy term NE (tik) which can 
allow for creation of matter. Quantum gravity is thus similar to the C-field 
theories (Hoyle and Narlikar, 1963) as far as creation of matter is con- 
cerned. 

We shall now turn to the solutions in the presence of matter. We will 
find that the nature of the solution depends crucially on the nature of the 
s o u r c e .  

(a) Radiation Universe. Let the background metric be isotropic and 
homogeneous, with 

d s 2  = gik d x i  d x k  = tit2 - 
dr 2 

( 1 -  r2/a 2) r2(d82 + sin2r d 2 ) (36) 

and the radiation source has the energy tensor 

, _  ( e e e)  
T~ - dia e, 3 ' 3 ' 3 (37) 
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These symmetries restrict f~ to a function of time, whose quantization is 
straightforward, since the action in equation (29) corresponds to a harmonic 
oscillator. The stationary states are well known and characterized by the set 
of integers. The expectation values (f~2) and NE ( t i k )  in a stationary state can 
be computed in a straightforward manner. A detailed algebra now reduces 
equation (28) to the simple, but nontrivial requirement, 

3c,,2( 3 c( 
e = - -  n + n + ~ (38) 

8~2G a 4 8,n .2 a 4 

Thus the universe can exist in quantized stationary states only if the 
radiation energy density is quantized. Notice that this result is obtained 
from the equations of gravity without any explicit quantization of the 
source. Classical gravity, as is well known, determines the classical dynamics 
of the source. Can quantum gravity uniquely determine the quantum 
dynamics of the source? The present result seems to suggest such an 
attractive possibility. However, one cannot rely too much on such a over- 
simplified model. 

(b) Dust Solution. The same background metric can also be sustained 
by a dust source with the stress tensor, 

T,3kdUm =d ia (  e, 0,0, 0) (39) 

The quantization of the conformal part can again be reduced to that of a 
harmonic oscillator, after a shift of origin in equation (31). The stationary 
states are again labeled by an integer n. The energy density of dust must 
now satisfy the quantum condition 

c 4 Lp( l)l/2 
e = ~r2----- ~- a--- ~ n + -~ (40) 

[in analogy with equation (38)]. 
(c) Scalar Field as Source. The structure of stress tensor for radiation 

and dust [see equations (37) and (39)] is quite different from that of a 
negative energy scalar field which has a structure, 

t~ E = d i a ( -  p, - p, - p, - 0) (41) 

It is this difference in structure that leads to the self-consistency require- 
ment in equations (38) and (40). Thus by using a scalar field as a source, one 
can avoid this quantum restriction and obtain a solution with flat back- 
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ground (which is not possible with radiation or dust). Assume that 

k 

= dia(e, e, e, e) (42) 

It turns out that equation (32) and (33) can be consistently solved for any 
value of e. The conformal factor behaves as a quantum harmonic oscillator 
with the frequency 

We have thus presented three different types of solutions to our 
equations. In the isotropic, homogeneous models there exists a scaling 
freedom in the form of the parameter a. Using a physical coordinate system, 
the metric in a stationary quantum state, labeled by n, is given by 

ds2=L2(n+�89  2 + sin20d,2)] (44) 

which is the form originally obtained without using the full set of equations 
[compare with equation (15)]. Thus the lower bound to the length scale 
exists in all these cases and leads to the avoidance of the singularity. 

4. CONCLUSION 

Conformal fluctuations have proved to be of definite value in studying 
the structure of quantized gravity especially near the singularities. The 
present results about stationary states help one to understand the mecha- 
nism for the avoidance of singularity. The analogy with the hydrogen atom 
is now complete. 

The second part of the paper has demonstrated a possible extension of 
the approach, at least as a valid approximation. Two major ideas emerge 
from this analysis: (i) Can the existence and creation of matter be explained 
by a quantum gravity process using the effective negative energy of the 
conformal part? (ii) Can the quantum dynamics of a source arise purely 
from a quantum gravitational consideration? 

Both the questions are under investigation. [For an idea similar to (i), 
see Brout et al. (1978)]. Only a detailed analysis of the dynamics can answer 
these questions unequivocally. The present model, however, indicates a 
tentative possibility. 
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